Posted by PZ Myers on May 22, 2006 03:01 PM

medusa_tease.jpg

I'm going to briefly summarize an interesting new article on cnidarian Hox genes…unfortunately, it requires a bit of background to put it in context, so bear with me for a moment.

First you need to understand what Hox genes are. They are transcription factors that use a particular DNA binding motif (called a homeobox), and they are found in clusters and expressed colinearly. What that means is that you find the Hox genes that are essential for specifying positional information along the length of the body in a group on a chromosome, and they are organized in order on the chromosome in the same order that they are turned on from front to back along the body axis. Hox genes are not the only genes that are important in this process, of course; animals also use another class of regulatory genes, the Wnt genes, to regulate development, for instance.

A gene can only be called a Hox gene sensu stricto if it has a homeobox sequence, is homologous to other known Hox genes, and is organized in a colinear cluster. If such a gene is not in a cluster, it is demoted and called simply a Hox-like gene.

Hox genes originated early in animal evolution. Genes containing a homeobox are older still, and are found in plants and animals, but the particular genes of the Hox system are unique to multicellular animals, and that key organization arrangement of the set of Hox genes in a cluster is more unique still. The question is exactly when the clusters arose, shortly after or sometime before the diversification of animals.

If you take a look at animal phylogeny, an important group are the diploblastic phyla, the cnidarians and ctenophores. They branched off early from the metazoan lineage, and they possess some sophisticated patterns of differentiation along the body axis. We know they have homeobox containing genes that are related to the ones used in patterning the bodies of us vertebrates, but are they organized in the same way? Did the cnidaria have Hox clusters, suggesting that the clustered Hox genes were a very early event in evolution, or do they lack them and therefore evolved an independent set of mechanisms for specifying positional information along the body axis?

Continue reading "Jellyfish lack true Hox genes!" (on Pharyngula)